extension | φ:Q→Aut N | d | ρ | Label | ID |
(C2×C6).(C22×S3) = C22×C3.S4 | φ: C22×S3/C22 → S3 ⊆ Aut C2×C6 | 36 | | (C2xC6).(C2^2xS3) | 288,835 |
(C2×C6).2(C22×S3) = Dic6.24D6 | φ: C22×S3/S3 → C22 ⊆ Aut C2×C6 | 48 | 8- | (C2xC6).2(C2^2xS3) | 288,957 |
(C2×C6).3(C22×S3) = S3×D4⋊2S3 | φ: C22×S3/S3 → C22 ⊆ Aut C2×C6 | 48 | 8- | (C2xC6).3(C2^2xS3) | 288,959 |
(C2×C6).4(C22×S3) = Dic6⋊12D6 | φ: C22×S3/S3 → C22 ⊆ Aut C2×C6 | 24 | 8+ | (C2xC6).4(C2^2xS3) | 288,960 |
(C2×C6).5(C22×S3) = D12⋊12D6 | φ: C22×S3/S3 → C22 ⊆ Aut C2×C6 | 48 | 8- | (C2xC6).5(C2^2xS3) | 288,961 |
(C2×C6).6(C22×S3) = D12⋊13D6 | φ: C22×S3/S3 → C22 ⊆ Aut C2×C6 | 24 | 8+ | (C2xC6).6(C2^2xS3) | 288,962 |
(C2×C6).7(C22×S3) = C2×D4×D9 | φ: C22×S3/C6 → C22 ⊆ Aut C2×C6 | 72 | | (C2xC6).7(C2^2xS3) | 288,356 |
(C2×C6).8(C22×S3) = C2×D4⋊2D9 | φ: C22×S3/C6 → C22 ⊆ Aut C2×C6 | 144 | | (C2xC6).8(C2^2xS3) | 288,357 |
(C2×C6).9(C22×S3) = C4○D4×D9 | φ: C22×S3/C6 → C22 ⊆ Aut C2×C6 | 72 | 4 | (C2xC6).9(C2^2xS3) | 288,362 |
(C2×C6).10(C22×S3) = D4⋊8D18 | φ: C22×S3/C6 → C22 ⊆ Aut C2×C6 | 72 | 4+ | (C2xC6).10(C2^2xS3) | 288,363 |
(C2×C6).11(C22×S3) = D4.10D18 | φ: C22×S3/C6 → C22 ⊆ Aut C2×C6 | 144 | 4- | (C2xC6).11(C2^2xS3) | 288,364 |
(C2×C6).12(C22×S3) = D12.33D6 | φ: C22×S3/C6 → C22 ⊆ Aut C2×C6 | 48 | 4 | (C2xC6).12(C2^2xS3) | 288,945 |
(C2×C6).13(C22×S3) = D12.34D6 | φ: C22×S3/C6 → C22 ⊆ Aut C2×C6 | 48 | 4- | (C2xC6).13(C2^2xS3) | 288,946 |
(C2×C6).14(C22×S3) = D12⋊23D6 | φ: C22×S3/C6 → C22 ⊆ Aut C2×C6 | 24 | 4 | (C2xC6).14(C2^2xS3) | 288,954 |
(C2×C6).15(C22×S3) = D12⋊27D6 | φ: C22×S3/C6 → C22 ⊆ Aut C2×C6 | 24 | 4+ | (C2xC6).15(C2^2xS3) | 288,956 |
(C2×C6).16(C22×S3) = C32⋊82+ 1+4 | φ: C22×S3/C6 → C22 ⊆ Aut C2×C6 | 72 | | (C2xC6).16(C2^2xS3) | 288,1009 |
(C2×C6).17(C22×S3) = C4○D4×C3⋊S3 | φ: C22×S3/C6 → C22 ⊆ Aut C2×C6 | 72 | | (C2xC6).17(C2^2xS3) | 288,1013 |
(C2×C6).18(C22×S3) = C62.154C23 | φ: C22×S3/C6 → C22 ⊆ Aut C2×C6 | 72 | | (C2xC6).18(C2^2xS3) | 288,1014 |
(C2×C6).19(C22×S3) = C32⋊92- 1+4 | φ: C22×S3/C6 → C22 ⊆ Aut C2×C6 | 144 | | (C2xC6).19(C2^2xS3) | 288,1015 |
(C2×C6).20(C22×S3) = C6×D4⋊2S3 | φ: C22×S3/D6 → C2 ⊆ Aut C2×C6 | 48 | | (C2xC6).20(C2^2xS3) | 288,993 |
(C2×C6).21(C22×S3) = C3×D4⋊6D6 | φ: C22×S3/D6 → C2 ⊆ Aut C2×C6 | 24 | 4 | (C2xC6).21(C2^2xS3) | 288,994 |
(C2×C6).22(C22×S3) = C3×S3×C4○D4 | φ: C22×S3/D6 → C2 ⊆ Aut C2×C6 | 48 | 4 | (C2xC6).22(C2^2xS3) | 288,998 |
(C2×C6).23(C22×S3) = C3×D4○D12 | φ: C22×S3/D6 → C2 ⊆ Aut C2×C6 | 48 | 4 | (C2xC6).23(C2^2xS3) | 288,999 |
(C2×C6).24(C22×S3) = C3×Q8○D12 | φ: C22×S3/D6 → C2 ⊆ Aut C2×C6 | 48 | 4 | (C2xC6).24(C2^2xS3) | 288,1000 |
(C2×C6).25(C22×S3) = C62.6C23 | φ: C22×S3/D6 → C2 ⊆ Aut C2×C6 | 48 | | (C2xC6).25(C2^2xS3) | 288,484 |
(C2×C6).26(C22×S3) = Dic3⋊5Dic6 | φ: C22×S3/D6 → C2 ⊆ Aut C2×C6 | 96 | | (C2xC6).26(C2^2xS3) | 288,485 |
(C2×C6).27(C22×S3) = C62.8C23 | φ: C22×S3/D6 → C2 ⊆ Aut C2×C6 | 96 | | (C2xC6).27(C2^2xS3) | 288,486 |
(C2×C6).28(C22×S3) = C62.9C23 | φ: C22×S3/D6 → C2 ⊆ Aut C2×C6 | 96 | | (C2xC6).28(C2^2xS3) | 288,487 |
(C2×C6).29(C22×S3) = C62.10C23 | φ: C22×S3/D6 → C2 ⊆ Aut C2×C6 | 96 | | (C2xC6).29(C2^2xS3) | 288,488 |
(C2×C6).30(C22×S3) = C62.11C23 | φ: C22×S3/D6 → C2 ⊆ Aut C2×C6 | 96 | | (C2xC6).30(C2^2xS3) | 288,489 |
(C2×C6).31(C22×S3) = Dic3×Dic6 | φ: C22×S3/D6 → C2 ⊆ Aut C2×C6 | 96 | | (C2xC6).31(C2^2xS3) | 288,490 |
(C2×C6).32(C22×S3) = C62.13C23 | φ: C22×S3/D6 → C2 ⊆ Aut C2×C6 | 96 | | (C2xC6).32(C2^2xS3) | 288,491 |
(C2×C6).33(C22×S3) = Dic3⋊6Dic6 | φ: C22×S3/D6 → C2 ⊆ Aut C2×C6 | 96 | | (C2xC6).33(C2^2xS3) | 288,492 |
(C2×C6).34(C22×S3) = Dic3.Dic6 | φ: C22×S3/D6 → C2 ⊆ Aut C2×C6 | 96 | | (C2xC6).34(C2^2xS3) | 288,493 |
(C2×C6).35(C22×S3) = C62.16C23 | φ: C22×S3/D6 → C2 ⊆ Aut C2×C6 | 96 | | (C2xC6).35(C2^2xS3) | 288,494 |
(C2×C6).36(C22×S3) = C62.17C23 | φ: C22×S3/D6 → C2 ⊆ Aut C2×C6 | 96 | | (C2xC6).36(C2^2xS3) | 288,495 |
(C2×C6).37(C22×S3) = C62.18C23 | φ: C22×S3/D6 → C2 ⊆ Aut C2×C6 | 48 | | (C2xC6).37(C2^2xS3) | 288,496 |
(C2×C6).38(C22×S3) = C62.19C23 | φ: C22×S3/D6 → C2 ⊆ Aut C2×C6 | 48 | | (C2xC6).38(C2^2xS3) | 288,497 |
(C2×C6).39(C22×S3) = C62.20C23 | φ: C22×S3/D6 → C2 ⊆ Aut C2×C6 | 48 | | (C2xC6).39(C2^2xS3) | 288,498 |
(C2×C6).40(C22×S3) = D6⋊Dic6 | φ: C22×S3/D6 → C2 ⊆ Aut C2×C6 | 96 | | (C2xC6).40(C2^2xS3) | 288,499 |
(C2×C6).41(C22×S3) = Dic3.D12 | φ: C22×S3/D6 → C2 ⊆ Aut C2×C6 | 48 | | (C2xC6).41(C2^2xS3) | 288,500 |
(C2×C6).42(C22×S3) = C62.23C23 | φ: C22×S3/D6 → C2 ⊆ Aut C2×C6 | 48 | | (C2xC6).42(C2^2xS3) | 288,501 |
(C2×C6).43(C22×S3) = C62.24C23 | φ: C22×S3/D6 → C2 ⊆ Aut C2×C6 | 48 | | (C2xC6).43(C2^2xS3) | 288,502 |
(C2×C6).44(C22×S3) = C62.25C23 | φ: C22×S3/D6 → C2 ⊆ Aut C2×C6 | 96 | | (C2xC6).44(C2^2xS3) | 288,503 |
(C2×C6).45(C22×S3) = D6⋊6Dic6 | φ: C22×S3/D6 → C2 ⊆ Aut C2×C6 | 96 | | (C2xC6).45(C2^2xS3) | 288,504 |
(C2×C6).46(C22×S3) = D6⋊7Dic6 | φ: C22×S3/D6 → C2 ⊆ Aut C2×C6 | 96 | | (C2xC6).46(C2^2xS3) | 288,505 |
(C2×C6).47(C22×S3) = C62.28C23 | φ: C22×S3/D6 → C2 ⊆ Aut C2×C6 | 96 | | (C2xC6).47(C2^2xS3) | 288,506 |
(C2×C6).48(C22×S3) = C62.29C23 | φ: C22×S3/D6 → C2 ⊆ Aut C2×C6 | 96 | | (C2xC6).48(C2^2xS3) | 288,507 |
(C2×C6).49(C22×S3) = C12.27D12 | φ: C22×S3/D6 → C2 ⊆ Aut C2×C6 | 96 | | (C2xC6).49(C2^2xS3) | 288,508 |
(C2×C6).50(C22×S3) = C62.31C23 | φ: C22×S3/D6 → C2 ⊆ Aut C2×C6 | 96 | | (C2xC6).50(C2^2xS3) | 288,509 |
(C2×C6).51(C22×S3) = C62.32C23 | φ: C22×S3/D6 → C2 ⊆ Aut C2×C6 | 96 | | (C2xC6).51(C2^2xS3) | 288,510 |
(C2×C6).52(C22×S3) = C62.33C23 | φ: C22×S3/D6 → C2 ⊆ Aut C2×C6 | 96 | | (C2xC6).52(C2^2xS3) | 288,511 |
(C2×C6).53(C22×S3) = C12.28D12 | φ: C22×S3/D6 → C2 ⊆ Aut C2×C6 | 48 | | (C2xC6).53(C2^2xS3) | 288,512 |
(C2×C6).54(C22×S3) = C62.35C23 | φ: C22×S3/D6 → C2 ⊆ Aut C2×C6 | 48 | | (C2xC6).54(C2^2xS3) | 288,513 |
(C2×C6).55(C22×S3) = Dic3⋊Dic6 | φ: C22×S3/D6 → C2 ⊆ Aut C2×C6 | 96 | | (C2xC6).55(C2^2xS3) | 288,514 |
(C2×C6).56(C22×S3) = C62.37C23 | φ: C22×S3/D6 → C2 ⊆ Aut C2×C6 | 96 | | (C2xC6).56(C2^2xS3) | 288,515 |
(C2×C6).57(C22×S3) = C62.38C23 | φ: C22×S3/D6 → C2 ⊆ Aut C2×C6 | 48 | | (C2xC6).57(C2^2xS3) | 288,516 |
(C2×C6).58(C22×S3) = C62.39C23 | φ: C22×S3/D6 → C2 ⊆ Aut C2×C6 | 96 | | (C2xC6).58(C2^2xS3) | 288,517 |
(C2×C6).59(C22×S3) = C62.40C23 | φ: C22×S3/D6 → C2 ⊆ Aut C2×C6 | 96 | | (C2xC6).59(C2^2xS3) | 288,518 |
(C2×C6).60(C22×S3) = C12.30D12 | φ: C22×S3/D6 → C2 ⊆ Aut C2×C6 | 48 | | (C2xC6).60(C2^2xS3) | 288,519 |
(C2×C6).61(C22×S3) = C62.42C23 | φ: C22×S3/D6 → C2 ⊆ Aut C2×C6 | 96 | | (C2xC6).61(C2^2xS3) | 288,520 |
(C2×C6).62(C22×S3) = C62.43C23 | φ: C22×S3/D6 → C2 ⊆ Aut C2×C6 | 96 | | (C2xC6).62(C2^2xS3) | 288,521 |
(C2×C6).63(C22×S3) = C62.44C23 | φ: C22×S3/D6 → C2 ⊆ Aut C2×C6 | 48 | | (C2xC6).63(C2^2xS3) | 288,522 |
(C2×C6).64(C22×S3) = C4×S3×Dic3 | φ: C22×S3/D6 → C2 ⊆ Aut C2×C6 | 96 | | (C2xC6).64(C2^2xS3) | 288,523 |
(C2×C6).65(C22×S3) = S3×Dic3⋊C4 | φ: C22×S3/D6 → C2 ⊆ Aut C2×C6 | 96 | | (C2xC6).65(C2^2xS3) | 288,524 |
(C2×C6).66(C22×S3) = C62.47C23 | φ: C22×S3/D6 → C2 ⊆ Aut C2×C6 | 96 | | (C2xC6).66(C2^2xS3) | 288,525 |
(C2×C6).67(C22×S3) = C62.48C23 | φ: C22×S3/D6 → C2 ⊆ Aut C2×C6 | 96 | | (C2xC6).67(C2^2xS3) | 288,526 |
(C2×C6).68(C22×S3) = C62.49C23 | φ: C22×S3/D6 → C2 ⊆ Aut C2×C6 | 96 | | (C2xC6).68(C2^2xS3) | 288,527 |
(C2×C6).69(C22×S3) = Dic3⋊4D12 | φ: C22×S3/D6 → C2 ⊆ Aut C2×C6 | 48 | | (C2xC6).69(C2^2xS3) | 288,528 |
(C2×C6).70(C22×S3) = C62.51C23 | φ: C22×S3/D6 → C2 ⊆ Aut C2×C6 | 48 | | (C2xC6).70(C2^2xS3) | 288,529 |
(C2×C6).71(C22×S3) = C4×C6.D6 | φ: C22×S3/D6 → C2 ⊆ Aut C2×C6 | 48 | | (C2xC6).71(C2^2xS3) | 288,530 |
(C2×C6).72(C22×S3) = C62.53C23 | φ: C22×S3/D6 → C2 ⊆ Aut C2×C6 | 48 | | (C2xC6).72(C2^2xS3) | 288,531 |
(C2×C6).73(C22×S3) = C62.54C23 | φ: C22×S3/D6 → C2 ⊆ Aut C2×C6 | 96 | | (C2xC6).73(C2^2xS3) | 288,532 |
(C2×C6).74(C22×S3) = C62.55C23 | φ: C22×S3/D6 → C2 ⊆ Aut C2×C6 | 96 | | (C2xC6).74(C2^2xS3) | 288,533 |
(C2×C6).75(C22×S3) = Dic3⋊D12 | φ: C22×S3/D6 → C2 ⊆ Aut C2×C6 | 48 | | (C2xC6).75(C2^2xS3) | 288,534 |
(C2×C6).76(C22×S3) = D6⋊1Dic6 | φ: C22×S3/D6 → C2 ⊆ Aut C2×C6 | 96 | | (C2xC6).76(C2^2xS3) | 288,535 |
(C2×C6).77(C22×S3) = C62.58C23 | φ: C22×S3/D6 → C2 ⊆ Aut C2×C6 | 48 | | (C2xC6).77(C2^2xS3) | 288,536 |
(C2×C6).78(C22×S3) = S3×C4⋊Dic3 | φ: C22×S3/D6 → C2 ⊆ Aut C2×C6 | 96 | | (C2xC6).78(C2^2xS3) | 288,537 |
(C2×C6).79(C22×S3) = D6.D12 | φ: C22×S3/D6 → C2 ⊆ Aut C2×C6 | 48 | | (C2xC6).79(C2^2xS3) | 288,538 |
(C2×C6).80(C22×S3) = D6.9D12 | φ: C22×S3/D6 → C2 ⊆ Aut C2×C6 | 96 | | (C2xC6).80(C2^2xS3) | 288,539 |
(C2×C6).81(C22×S3) = Dic3×D12 | φ: C22×S3/D6 → C2 ⊆ Aut C2×C6 | 96 | | (C2xC6).81(C2^2xS3) | 288,540 |
(C2×C6).82(C22×S3) = D6⋊2Dic6 | φ: C22×S3/D6 → C2 ⊆ Aut C2×C6 | 96 | | (C2xC6).82(C2^2xS3) | 288,541 |
(C2×C6).83(C22×S3) = Dic3⋊5D12 | φ: C22×S3/D6 → C2 ⊆ Aut C2×C6 | 48 | | (C2xC6).83(C2^2xS3) | 288,542 |
(C2×C6).84(C22×S3) = C62.65C23 | φ: C22×S3/D6 → C2 ⊆ Aut C2×C6 | 48 | | (C2xC6).84(C2^2xS3) | 288,543 |
(C2×C6).85(C22×S3) = D6⋊3Dic6 | φ: C22×S3/D6 → C2 ⊆ Aut C2×C6 | 96 | | (C2xC6).85(C2^2xS3) | 288,544 |
(C2×C6).86(C22×S3) = C62.67C23 | φ: C22×S3/D6 → C2 ⊆ Aut C2×C6 | 48 | | (C2xC6).86(C2^2xS3) | 288,545 |
(C2×C6).87(C22×S3) = D12⋊Dic3 | φ: C22×S3/D6 → C2 ⊆ Aut C2×C6 | 96 | | (C2xC6).87(C2^2xS3) | 288,546 |
(C2×C6).88(C22×S3) = D6⋊4Dic6 | φ: C22×S3/D6 → C2 ⊆ Aut C2×C6 | 96 | | (C2xC6).88(C2^2xS3) | 288,547 |
(C2×C6).89(C22×S3) = C62.70C23 | φ: C22×S3/D6 → C2 ⊆ Aut C2×C6 | 48 | | (C2xC6).89(C2^2xS3) | 288,548 |
(C2×C6).90(C22×S3) = C4×D6⋊S3 | φ: C22×S3/D6 → C2 ⊆ Aut C2×C6 | 96 | | (C2xC6).90(C2^2xS3) | 288,549 |
(C2×C6).91(C22×S3) = C62.72C23 | φ: C22×S3/D6 → C2 ⊆ Aut C2×C6 | 96 | | (C2xC6).91(C2^2xS3) | 288,550 |
(C2×C6).92(C22×S3) = C4×C3⋊D12 | φ: C22×S3/D6 → C2 ⊆ Aut C2×C6 | 48 | | (C2xC6).92(C2^2xS3) | 288,551 |
(C2×C6).93(C22×S3) = C62.74C23 | φ: C22×S3/D6 → C2 ⊆ Aut C2×C6 | 48 | | (C2xC6).93(C2^2xS3) | 288,552 |
(C2×C6).94(C22×S3) = C62.75C23 | φ: C22×S3/D6 → C2 ⊆ Aut C2×C6 | 96 | | (C2xC6).94(C2^2xS3) | 288,553 |
(C2×C6).95(C22×S3) = D6⋊D12 | φ: C22×S3/D6 → C2 ⊆ Aut C2×C6 | 48 | | (C2xC6).95(C2^2xS3) | 288,554 |
(C2×C6).96(C22×S3) = C62.77C23 | φ: C22×S3/D6 → C2 ⊆ Aut C2×C6 | 48 | | (C2xC6).96(C2^2xS3) | 288,555 |
(C2×C6).97(C22×S3) = D6⋊2D12 | φ: C22×S3/D6 → C2 ⊆ Aut C2×C6 | 96 | | (C2xC6).97(C2^2xS3) | 288,556 |
(C2×C6).98(C22×S3) = C12⋊7D12 | φ: C22×S3/D6 → C2 ⊆ Aut C2×C6 | 48 | | (C2xC6).98(C2^2xS3) | 288,557 |
(C2×C6).99(C22×S3) = Dic3⋊3D12 | φ: C22×S3/D6 → C2 ⊆ Aut C2×C6 | 48 | | (C2xC6).99(C2^2xS3) | 288,558 |
(C2×C6).100(C22×S3) = C12⋊D12 | φ: C22×S3/D6 → C2 ⊆ Aut C2×C6 | 48 | | (C2xC6).100(C2^2xS3) | 288,559 |
(C2×C6).101(C22×S3) = C62.82C23 | φ: C22×S3/D6 → C2 ⊆ Aut C2×C6 | 48 | | (C2xC6).101(C2^2xS3) | 288,560 |
(C2×C6).102(C22×S3) = C62.83C23 | φ: C22×S3/D6 → C2 ⊆ Aut C2×C6 | 96 | | (C2xC6).102(C2^2xS3) | 288,561 |
(C2×C6).103(C22×S3) = C62.84C23 | φ: C22×S3/D6 → C2 ⊆ Aut C2×C6 | 96 | | (C2xC6).103(C2^2xS3) | 288,562 |
(C2×C6).104(C22×S3) = C62.85C23 | φ: C22×S3/D6 → C2 ⊆ Aut C2×C6 | 96 | | (C2xC6).104(C2^2xS3) | 288,563 |
(C2×C6).105(C22×S3) = C12⋊2D12 | φ: C22×S3/D6 → C2 ⊆ Aut C2×C6 | 48 | | (C2xC6).105(C2^2xS3) | 288,564 |
(C2×C6).106(C22×S3) = C4×C32⋊2Q8 | φ: C22×S3/D6 → C2 ⊆ Aut C2×C6 | 96 | | (C2xC6).106(C2^2xS3) | 288,565 |
(C2×C6).107(C22×S3) = C12⋊3Dic6 | φ: C22×S3/D6 → C2 ⊆ Aut C2×C6 | 96 | | (C2xC6).107(C2^2xS3) | 288,566 |
(C2×C6).108(C22×S3) = C12⋊Dic6 | φ: C22×S3/D6 → C2 ⊆ Aut C2×C6 | 96 | | (C2xC6).108(C2^2xS3) | 288,567 |
(C2×C6).109(C22×S3) = S3×D6⋊C4 | φ: C22×S3/D6 → C2 ⊆ Aut C2×C6 | 48 | | (C2xC6).109(C2^2xS3) | 288,568 |
(C2×C6).110(C22×S3) = C62.91C23 | φ: C22×S3/D6 → C2 ⊆ Aut C2×C6 | 48 | | (C2xC6).110(C2^2xS3) | 288,569 |
(C2×C6).111(C22×S3) = D6⋊4D12 | φ: C22×S3/D6 → C2 ⊆ Aut C2×C6 | 48 | | (C2xC6).111(C2^2xS3) | 288,570 |
(C2×C6).112(C22×S3) = D6⋊5D12 | φ: C22×S3/D6 → C2 ⊆ Aut C2×C6 | 48 | | (C2xC6).112(C2^2xS3) | 288,571 |
(C2×C6).113(C22×S3) = C62.94C23 | φ: C22×S3/D6 → C2 ⊆ Aut C2×C6 | 48 | | (C2xC6).113(C2^2xS3) | 288,600 |
(C2×C6).114(C22×S3) = C62.95C23 | φ: C22×S3/D6 → C2 ⊆ Aut C2×C6 | 48 | | (C2xC6).114(C2^2xS3) | 288,601 |
(C2×C6).115(C22×S3) = C2×Dic32 | φ: C22×S3/D6 → C2 ⊆ Aut C2×C6 | 96 | | (C2xC6).115(C2^2xS3) | 288,602 |
(C2×C6).116(C22×S3) = C62.97C23 | φ: C22×S3/D6 → C2 ⊆ Aut C2×C6 | 48 | | (C2xC6).116(C2^2xS3) | 288,603 |
(C2×C6).117(C22×S3) = C62.98C23 | φ: C22×S3/D6 → C2 ⊆ Aut C2×C6 | 48 | | (C2xC6).117(C2^2xS3) | 288,604 |
(C2×C6).118(C22×S3) = C62.99C23 | φ: C22×S3/D6 → C2 ⊆ Aut C2×C6 | 48 | | (C2xC6).118(C2^2xS3) | 288,605 |
(C2×C6).119(C22×S3) = C62.100C23 | φ: C22×S3/D6 → C2 ⊆ Aut C2×C6 | 48 | | (C2xC6).119(C2^2xS3) | 288,606 |
(C2×C6).120(C22×S3) = C62.101C23 | φ: C22×S3/D6 → C2 ⊆ Aut C2×C6 | 48 | | (C2xC6).120(C2^2xS3) | 288,607 |
(C2×C6).121(C22×S3) = C2×D6⋊Dic3 | φ: C22×S3/D6 → C2 ⊆ Aut C2×C6 | 96 | | (C2xC6).121(C2^2xS3) | 288,608 |
(C2×C6).122(C22×S3) = C62.56D4 | φ: C22×S3/D6 → C2 ⊆ Aut C2×C6 | 48 | | (C2xC6).122(C2^2xS3) | 288,609 |
(C2×C6).123(C22×S3) = C62.57D4 | φ: C22×S3/D6 → C2 ⊆ Aut C2×C6 | 48 | | (C2xC6).123(C2^2xS3) | 288,610 |
(C2×C6).124(C22×S3) = C2×C6.D12 | φ: C22×S3/D6 → C2 ⊆ Aut C2×C6 | 48 | | (C2xC6).124(C2^2xS3) | 288,611 |
(C2×C6).125(C22×S3) = C62⋊3Q8 | φ: C22×S3/D6 → C2 ⊆ Aut C2×C6 | 48 | | (C2xC6).125(C2^2xS3) | 288,612 |
(C2×C6).126(C22×S3) = C2×Dic3⋊Dic3 | φ: C22×S3/D6 → C2 ⊆ Aut C2×C6 | 96 | | (C2xC6).126(C2^2xS3) | 288,613 |
(C2×C6).127(C22×S3) = C62.60D4 | φ: C22×S3/D6 → C2 ⊆ Aut C2×C6 | 48 | | (C2xC6).127(C2^2xS3) | 288,614 |
(C2×C6).128(C22×S3) = C2×C62.C22 | φ: C22×S3/D6 → C2 ⊆ Aut C2×C6 | 96 | | (C2xC6).128(C2^2xS3) | 288,615 |
(C2×C6).129(C22×S3) = S3×C6.D4 | φ: C22×S3/D6 → C2 ⊆ Aut C2×C6 | 48 | | (C2xC6).129(C2^2xS3) | 288,616 |
(C2×C6).130(C22×S3) = C62.111C23 | φ: C22×S3/D6 → C2 ⊆ Aut C2×C6 | 48 | | (C2xC6).130(C2^2xS3) | 288,617 |
(C2×C6).131(C22×S3) = C62.112C23 | φ: C22×S3/D6 → C2 ⊆ Aut C2×C6 | 48 | | (C2xC6).131(C2^2xS3) | 288,618 |
(C2×C6).132(C22×S3) = C62.113C23 | φ: C22×S3/D6 → C2 ⊆ Aut C2×C6 | 48 | | (C2xC6).132(C2^2xS3) | 288,619 |
(C2×C6).133(C22×S3) = Dic3×C3⋊D4 | φ: C22×S3/D6 → C2 ⊆ Aut C2×C6 | 48 | | (C2xC6).133(C2^2xS3) | 288,620 |
(C2×C6).134(C22×S3) = C62.115C23 | φ: C22×S3/D6 → C2 ⊆ Aut C2×C6 | 48 | | (C2xC6).134(C2^2xS3) | 288,621 |
(C2×C6).135(C22×S3) = C62.116C23 | φ: C22×S3/D6 → C2 ⊆ Aut C2×C6 | 24 | | (C2xC6).135(C2^2xS3) | 288,622 |
(C2×C6).136(C22×S3) = C62.117C23 | φ: C22×S3/D6 → C2 ⊆ Aut C2×C6 | 48 | | (C2xC6).136(C2^2xS3) | 288,623 |
(C2×C6).137(C22×S3) = C62⋊4D4 | φ: C22×S3/D6 → C2 ⊆ Aut C2×C6 | 48 | | (C2xC6).137(C2^2xS3) | 288,624 |
(C2×C6).138(C22×S3) = C62⋊5D4 | φ: C22×S3/D6 → C2 ⊆ Aut C2×C6 | 48 | | (C2xC6).138(C2^2xS3) | 288,625 |
(C2×C6).139(C22×S3) = C62⋊6D4 | φ: C22×S3/D6 → C2 ⊆ Aut C2×C6 | 48 | | (C2xC6).139(C2^2xS3) | 288,626 |
(C2×C6).140(C22×S3) = C62.121C23 | φ: C22×S3/D6 → C2 ⊆ Aut C2×C6 | 48 | | (C2xC6).140(C2^2xS3) | 288,627 |
(C2×C6).141(C22×S3) = C62⋊7D4 | φ: C22×S3/D6 → C2 ⊆ Aut C2×C6 | 48 | | (C2xC6).141(C2^2xS3) | 288,628 |
(C2×C6).142(C22×S3) = C62⋊8D4 | φ: C22×S3/D6 → C2 ⊆ Aut C2×C6 | 24 | | (C2xC6).142(C2^2xS3) | 288,629 |
(C2×C6).143(C22×S3) = C62⋊4Q8 | φ: C22×S3/D6 → C2 ⊆ Aut C2×C6 | 48 | | (C2xC6).143(C2^2xS3) | 288,630 |
(C2×C6).144(C22×S3) = C62.125C23 | φ: C22×S3/D6 → C2 ⊆ Aut C2×C6 | 48 | | (C2xC6).144(C2^2xS3) | 288,631 |
(C2×C6).145(C22×S3) = C2×S3×Dic6 | φ: C22×S3/D6 → C2 ⊆ Aut C2×C6 | 96 | | (C2xC6).145(C2^2xS3) | 288,942 |
(C2×C6).146(C22×S3) = C2×D12⋊5S3 | φ: C22×S3/D6 → C2 ⊆ Aut C2×C6 | 96 | | (C2xC6).146(C2^2xS3) | 288,943 |
(C2×C6).147(C22×S3) = C2×D12⋊S3 | φ: C22×S3/D6 → C2 ⊆ Aut C2×C6 | 48 | | (C2xC6).147(C2^2xS3) | 288,944 |
(C2×C6).148(C22×S3) = C2×Dic3.D6 | φ: C22×S3/D6 → C2 ⊆ Aut C2×C6 | 48 | | (C2xC6).148(C2^2xS3) | 288,947 |
(C2×C6).149(C22×S3) = C2×D6.D6 | φ: C22×S3/D6 → C2 ⊆ Aut C2×C6 | 48 | | (C2xC6).149(C2^2xS3) | 288,948 |
(C2×C6).150(C22×S3) = C2×D6.6D6 | φ: C22×S3/D6 → C2 ⊆ Aut C2×C6 | 48 | | (C2xC6).150(C2^2xS3) | 288,949 |
(C2×C6).151(C22×S3) = S32×C2×C4 | φ: C22×S3/D6 → C2 ⊆ Aut C2×C6 | 48 | | (C2xC6).151(C2^2xS3) | 288,950 |
(C2×C6).152(C22×S3) = C2×S3×D12 | φ: C22×S3/D6 → C2 ⊆ Aut C2×C6 | 48 | | (C2xC6).152(C2^2xS3) | 288,951 |
(C2×C6).153(C22×S3) = C2×D6⋊D6 | φ: C22×S3/D6 → C2 ⊆ Aut C2×C6 | 48 | | (C2xC6).153(C2^2xS3) | 288,952 |
(C2×C6).154(C22×S3) = S3×C4○D12 | φ: C22×S3/D6 → C2 ⊆ Aut C2×C6 | 48 | 4 | (C2xC6).154(C2^2xS3) | 288,953 |
(C2×C6).155(C22×S3) = D12⋊24D6 | φ: C22×S3/D6 → C2 ⊆ Aut C2×C6 | 48 | 4 | (C2xC6).155(C2^2xS3) | 288,955 |
(C2×C6).156(C22×S3) = C22×S3×Dic3 | φ: C22×S3/D6 → C2 ⊆ Aut C2×C6 | 96 | | (C2xC6).156(C2^2xS3) | 288,969 |
(C2×C6).157(C22×S3) = C2×D6.3D6 | φ: C22×S3/D6 → C2 ⊆ Aut C2×C6 | 48 | | (C2xC6).157(C2^2xS3) | 288,970 |
(C2×C6).158(C22×S3) = C2×D6.4D6 | φ: C22×S3/D6 → C2 ⊆ Aut C2×C6 | 48 | | (C2xC6).158(C2^2xS3) | 288,971 |
(C2×C6).159(C22×S3) = C22×C6.D6 | φ: C22×S3/D6 → C2 ⊆ Aut C2×C6 | 48 | | (C2xC6).159(C2^2xS3) | 288,972 |
(C2×C6).160(C22×S3) = C22×D6⋊S3 | φ: C22×S3/D6 → C2 ⊆ Aut C2×C6 | 96 | | (C2xC6).160(C2^2xS3) | 288,973 |
(C2×C6).161(C22×S3) = C22×C3⋊D12 | φ: C22×S3/D6 → C2 ⊆ Aut C2×C6 | 48 | | (C2xC6).161(C2^2xS3) | 288,974 |
(C2×C6).162(C22×S3) = C22×C32⋊2Q8 | φ: C22×S3/D6 → C2 ⊆ Aut C2×C6 | 96 | | (C2xC6).162(C2^2xS3) | 288,975 |
(C2×C6).163(C22×S3) = C32⋊2+ 1+4 | φ: C22×S3/D6 → C2 ⊆ Aut C2×C6 | 24 | 4 | (C2xC6).163(C2^2xS3) | 288,978 |
(C2×C6).164(C22×S3) = C6×C4○D12 | φ: C22×S3/C2×C6 → C2 ⊆ Aut C2×C6 | 48 | | (C2xC6).164(C2^2xS3) | 288,991 |
(C2×C6).165(C22×S3) = C3×Q8.15D6 | φ: C22×S3/C2×C6 → C2 ⊆ Aut C2×C6 | 48 | 4 | (C2xC6).165(C2^2xS3) | 288,997 |
(C2×C6).166(C22×S3) = C4×Dic18 | φ: C22×S3/C2×C6 → C2 ⊆ Aut C2×C6 | 288 | | (C2xC6).166(C2^2xS3) | 288,78 |
(C2×C6).167(C22×S3) = C36⋊2Q8 | φ: C22×S3/C2×C6 → C2 ⊆ Aut C2×C6 | 288 | | (C2xC6).167(C2^2xS3) | 288,79 |
(C2×C6).168(C22×S3) = C36.6Q8 | φ: C22×S3/C2×C6 → C2 ⊆ Aut C2×C6 | 288 | | (C2xC6).168(C2^2xS3) | 288,80 |
(C2×C6).169(C22×S3) = C42×D9 | φ: C22×S3/C2×C6 → C2 ⊆ Aut C2×C6 | 144 | | (C2xC6).169(C2^2xS3) | 288,81 |
(C2×C6).170(C22×S3) = C42⋊2D9 | φ: C22×S3/C2×C6 → C2 ⊆ Aut C2×C6 | 144 | | (C2xC6).170(C2^2xS3) | 288,82 |
(C2×C6).171(C22×S3) = C4×D36 | φ: C22×S3/C2×C6 → C2 ⊆ Aut C2×C6 | 144 | | (C2xC6).171(C2^2xS3) | 288,83 |
(C2×C6).172(C22×S3) = C42⋊6D9 | φ: C22×S3/C2×C6 → C2 ⊆ Aut C2×C6 | 144 | | (C2xC6).172(C2^2xS3) | 288,84 |
(C2×C6).173(C22×S3) = C42⋊7D9 | φ: C22×S3/C2×C6 → C2 ⊆ Aut C2×C6 | 144 | | (C2xC6).173(C2^2xS3) | 288,85 |
(C2×C6).174(C22×S3) = C42⋊3D9 | φ: C22×S3/C2×C6 → C2 ⊆ Aut C2×C6 | 144 | | (C2xC6).174(C2^2xS3) | 288,86 |
(C2×C6).175(C22×S3) = C23.16D18 | φ: C22×S3/C2×C6 → C2 ⊆ Aut C2×C6 | 144 | | (C2xC6).175(C2^2xS3) | 288,87 |
(C2×C6).176(C22×S3) = C22⋊2Dic18 | φ: C22×S3/C2×C6 → C2 ⊆ Aut C2×C6 | 144 | | (C2xC6).176(C2^2xS3) | 288,88 |
(C2×C6).177(C22×S3) = C23.8D18 | φ: C22×S3/C2×C6 → C2 ⊆ Aut C2×C6 | 144 | | (C2xC6).177(C2^2xS3) | 288,89 |
(C2×C6).178(C22×S3) = C22⋊C4×D9 | φ: C22×S3/C2×C6 → C2 ⊆ Aut C2×C6 | 72 | | (C2xC6).178(C2^2xS3) | 288,90 |
(C2×C6).179(C22×S3) = Dic9⋊4D4 | φ: C22×S3/C2×C6 → C2 ⊆ Aut C2×C6 | 144 | | (C2xC6).179(C2^2xS3) | 288,91 |
(C2×C6).180(C22×S3) = C22⋊3D36 | φ: C22×S3/C2×C6 → C2 ⊆ Aut C2×C6 | 72 | | (C2xC6).180(C2^2xS3) | 288,92 |
(C2×C6).181(C22×S3) = C23.9D18 | φ: C22×S3/C2×C6 → C2 ⊆ Aut C2×C6 | 144 | | (C2xC6).181(C2^2xS3) | 288,93 |
(C2×C6).182(C22×S3) = D18⋊D4 | φ: C22×S3/C2×C6 → C2 ⊆ Aut C2×C6 | 144 | | (C2xC6).182(C2^2xS3) | 288,94 |
(C2×C6).183(C22×S3) = Dic9.D4 | φ: C22×S3/C2×C6 → C2 ⊆ Aut C2×C6 | 144 | | (C2xC6).183(C2^2xS3) | 288,95 |
(C2×C6).184(C22×S3) = C22.4D36 | φ: C22×S3/C2×C6 → C2 ⊆ Aut C2×C6 | 144 | | (C2xC6).184(C2^2xS3) | 288,96 |
(C2×C6).185(C22×S3) = Dic9⋊3Q8 | φ: C22×S3/C2×C6 → C2 ⊆ Aut C2×C6 | 288 | | (C2xC6).185(C2^2xS3) | 288,97 |
(C2×C6).186(C22×S3) = C36⋊Q8 | φ: C22×S3/C2×C6 → C2 ⊆ Aut C2×C6 | 288 | | (C2xC6).186(C2^2xS3) | 288,98 |
(C2×C6).187(C22×S3) = Dic9.Q8 | φ: C22×S3/C2×C6 → C2 ⊆ Aut C2×C6 | 288 | | (C2xC6).187(C2^2xS3) | 288,99 |
(C2×C6).188(C22×S3) = C36.3Q8 | φ: C22×S3/C2×C6 → C2 ⊆ Aut C2×C6 | 288 | | (C2xC6).188(C2^2xS3) | 288,100 |
(C2×C6).189(C22×S3) = C4⋊C4×D9 | φ: C22×S3/C2×C6 → C2 ⊆ Aut C2×C6 | 144 | | (C2xC6).189(C2^2xS3) | 288,101 |
(C2×C6).190(C22×S3) = C4⋊C4⋊7D9 | φ: C22×S3/C2×C6 → C2 ⊆ Aut C2×C6 | 144 | | (C2xC6).190(C2^2xS3) | 288,102 |
(C2×C6).191(C22×S3) = D36⋊C4 | φ: C22×S3/C2×C6 → C2 ⊆ Aut C2×C6 | 144 | | (C2xC6).191(C2^2xS3) | 288,103 |
(C2×C6).192(C22×S3) = D18.D4 | φ: C22×S3/C2×C6 → C2 ⊆ Aut C2×C6 | 144 | | (C2xC6).192(C2^2xS3) | 288,104 |
(C2×C6).193(C22×S3) = C4⋊D36 | φ: C22×S3/C2×C6 → C2 ⊆ Aut C2×C6 | 144 | | (C2xC6).193(C2^2xS3) | 288,105 |
(C2×C6).194(C22×S3) = D18⋊Q8 | φ: C22×S3/C2×C6 → C2 ⊆ Aut C2×C6 | 144 | | (C2xC6).194(C2^2xS3) | 288,106 |
(C2×C6).195(C22×S3) = D18⋊2Q8 | φ: C22×S3/C2×C6 → C2 ⊆ Aut C2×C6 | 144 | | (C2xC6).195(C2^2xS3) | 288,107 |
(C2×C6).196(C22×S3) = C4⋊C4⋊D9 | φ: C22×S3/C2×C6 → C2 ⊆ Aut C2×C6 | 144 | | (C2xC6).196(C2^2xS3) | 288,108 |
(C2×C6).197(C22×S3) = C2×C4×Dic9 | φ: C22×S3/C2×C6 → C2 ⊆ Aut C2×C6 | 288 | | (C2xC6).197(C2^2xS3) | 288,132 |
(C2×C6).198(C22×S3) = C2×Dic9⋊C4 | φ: C22×S3/C2×C6 → C2 ⊆ Aut C2×C6 | 288 | | (C2xC6).198(C2^2xS3) | 288,133 |
(C2×C6).199(C22×S3) = C36.49D4 | φ: C22×S3/C2×C6 → C2 ⊆ Aut C2×C6 | 144 | | (C2xC6).199(C2^2xS3) | 288,134 |
(C2×C6).200(C22×S3) = C2×C4⋊Dic9 | φ: C22×S3/C2×C6 → C2 ⊆ Aut C2×C6 | 288 | | (C2xC6).200(C2^2xS3) | 288,135 |
(C2×C6).201(C22×S3) = C23.26D18 | φ: C22×S3/C2×C6 → C2 ⊆ Aut C2×C6 | 144 | | (C2xC6).201(C2^2xS3) | 288,136 |
(C2×C6).202(C22×S3) = C2×D18⋊C4 | φ: C22×S3/C2×C6 → C2 ⊆ Aut C2×C6 | 144 | | (C2xC6).202(C2^2xS3) | 288,137 |
(C2×C6).203(C22×S3) = C4×C9⋊D4 | φ: C22×S3/C2×C6 → C2 ⊆ Aut C2×C6 | 144 | | (C2xC6).203(C2^2xS3) | 288,138 |
(C2×C6).204(C22×S3) = C23.28D18 | φ: C22×S3/C2×C6 → C2 ⊆ Aut C2×C6 | 144 | | (C2xC6).204(C2^2xS3) | 288,139 |
(C2×C6).205(C22×S3) = C36⋊7D4 | φ: C22×S3/C2×C6 → C2 ⊆ Aut C2×C6 | 144 | | (C2xC6).205(C2^2xS3) | 288,140 |
(C2×C6).206(C22×S3) = D4×Dic9 | φ: C22×S3/C2×C6 → C2 ⊆ Aut C2×C6 | 144 | | (C2xC6).206(C2^2xS3) | 288,144 |
(C2×C6).207(C22×S3) = C23.23D18 | φ: C22×S3/C2×C6 → C2 ⊆ Aut C2×C6 | 144 | | (C2xC6).207(C2^2xS3) | 288,145 |
(C2×C6).208(C22×S3) = C36.17D4 | φ: C22×S3/C2×C6 → C2 ⊆ Aut C2×C6 | 144 | | (C2xC6).208(C2^2xS3) | 288,146 |
(C2×C6).209(C22×S3) = C23⋊2D18 | φ: C22×S3/C2×C6 → C2 ⊆ Aut C2×C6 | 72 | | (C2xC6).209(C2^2xS3) | 288,147 |
(C2×C6).210(C22×S3) = C36⋊2D4 | φ: C22×S3/C2×C6 → C2 ⊆ Aut C2×C6 | 144 | | (C2xC6).210(C2^2xS3) | 288,148 |
(C2×C6).211(C22×S3) = Dic9⋊D4 | φ: C22×S3/C2×C6 → C2 ⊆ Aut C2×C6 | 144 | | (C2xC6).211(C2^2xS3) | 288,149 |
(C2×C6).212(C22×S3) = C36⋊D4 | φ: C22×S3/C2×C6 → C2 ⊆ Aut C2×C6 | 144 | | (C2xC6).212(C2^2xS3) | 288,150 |
(C2×C6).213(C22×S3) = Dic9⋊Q8 | φ: C22×S3/C2×C6 → C2 ⊆ Aut C2×C6 | 288 | | (C2xC6).213(C2^2xS3) | 288,154 |
(C2×C6).214(C22×S3) = Q8×Dic9 | φ: C22×S3/C2×C6 → C2 ⊆ Aut C2×C6 | 288 | | (C2xC6).214(C2^2xS3) | 288,155 |
(C2×C6).215(C22×S3) = D18⋊3Q8 | φ: C22×S3/C2×C6 → C2 ⊆ Aut C2×C6 | 144 | | (C2xC6).215(C2^2xS3) | 288,156 |
(C2×C6).216(C22×S3) = C36.23D4 | φ: C22×S3/C2×C6 → C2 ⊆ Aut C2×C6 | 144 | | (C2xC6).216(C2^2xS3) | 288,157 |
(C2×C6).217(C22×S3) = C2×C18.D4 | φ: C22×S3/C2×C6 → C2 ⊆ Aut C2×C6 | 144 | | (C2xC6).217(C2^2xS3) | 288,162 |
(C2×C6).218(C22×S3) = C24⋊4D9 | φ: C22×S3/C2×C6 → C2 ⊆ Aut C2×C6 | 72 | | (C2xC6).218(C2^2xS3) | 288,163 |
(C2×C6).219(C22×S3) = C22×Dic18 | φ: C22×S3/C2×C6 → C2 ⊆ Aut C2×C6 | 288 | | (C2xC6).219(C2^2xS3) | 288,352 |
(C2×C6).220(C22×S3) = C22×C4×D9 | φ: C22×S3/C2×C6 → C2 ⊆ Aut C2×C6 | 144 | | (C2xC6).220(C2^2xS3) | 288,353 |
(C2×C6).221(C22×S3) = C22×D36 | φ: C22×S3/C2×C6 → C2 ⊆ Aut C2×C6 | 144 | | (C2xC6).221(C2^2xS3) | 288,354 |
(C2×C6).222(C22×S3) = C2×D36⋊5C2 | φ: C22×S3/C2×C6 → C2 ⊆ Aut C2×C6 | 144 | | (C2xC6).222(C2^2xS3) | 288,355 |
(C2×C6).223(C22×S3) = D4⋊6D18 | φ: C22×S3/C2×C6 → C2 ⊆ Aut C2×C6 | 72 | 4 | (C2xC6).223(C2^2xS3) | 288,358 |
(C2×C6).224(C22×S3) = C2×Q8×D9 | φ: C22×S3/C2×C6 → C2 ⊆ Aut C2×C6 | 144 | | (C2xC6).224(C2^2xS3) | 288,359 |
(C2×C6).225(C22×S3) = C2×Q8⋊3D9 | φ: C22×S3/C2×C6 → C2 ⊆ Aut C2×C6 | 144 | | (C2xC6).225(C2^2xS3) | 288,360 |
(C2×C6).226(C22×S3) = Q8.15D18 | φ: C22×S3/C2×C6 → C2 ⊆ Aut C2×C6 | 144 | 4 | (C2xC6).226(C2^2xS3) | 288,361 |
(C2×C6).227(C22×S3) = C23×Dic9 | φ: C22×S3/C2×C6 → C2 ⊆ Aut C2×C6 | 288 | | (C2xC6).227(C2^2xS3) | 288,365 |
(C2×C6).228(C22×S3) = C22×C9⋊D4 | φ: C22×S3/C2×C6 → C2 ⊆ Aut C2×C6 | 144 | | (C2xC6).228(C2^2xS3) | 288,366 |
(C2×C6).229(C22×S3) = C4×C32⋊4Q8 | φ: C22×S3/C2×C6 → C2 ⊆ Aut C2×C6 | 288 | | (C2xC6).229(C2^2xS3) | 288,725 |
(C2×C6).230(C22×S3) = C12⋊6Dic6 | φ: C22×S3/C2×C6 → C2 ⊆ Aut C2×C6 | 288 | | (C2xC6).230(C2^2xS3) | 288,726 |
(C2×C6).231(C22×S3) = C12.25Dic6 | φ: C22×S3/C2×C6 → C2 ⊆ Aut C2×C6 | 288 | | (C2xC6).231(C2^2xS3) | 288,727 |
(C2×C6).232(C22×S3) = C42×C3⋊S3 | φ: C22×S3/C2×C6 → C2 ⊆ Aut C2×C6 | 144 | | (C2xC6).232(C2^2xS3) | 288,728 |
(C2×C6).233(C22×S3) = C122⋊16C2 | φ: C22×S3/C2×C6 → C2 ⊆ Aut C2×C6 | 144 | | (C2xC6).233(C2^2xS3) | 288,729 |
(C2×C6).234(C22×S3) = C4×C12⋊S3 | φ: C22×S3/C2×C6 → C2 ⊆ Aut C2×C6 | 144 | | (C2xC6).234(C2^2xS3) | 288,730 |
(C2×C6).235(C22×S3) = C12⋊4D12 | φ: C22×S3/C2×C6 → C2 ⊆ Aut C2×C6 | 144 | | (C2xC6).235(C2^2xS3) | 288,731 |
(C2×C6).236(C22×S3) = C122⋊6C2 | φ: C22×S3/C2×C6 → C2 ⊆ Aut C2×C6 | 144 | | (C2xC6).236(C2^2xS3) | 288,732 |
(C2×C6).237(C22×S3) = C122⋊2C2 | φ: C22×S3/C2×C6 → C2 ⊆ Aut C2×C6 | 144 | | (C2xC6).237(C2^2xS3) | 288,733 |
(C2×C6).238(C22×S3) = C62.221C23 | φ: C22×S3/C2×C6 → C2 ⊆ Aut C2×C6 | 144 | | (C2xC6).238(C2^2xS3) | 288,734 |
(C2×C6).239(C22×S3) = C62⋊6Q8 | φ: C22×S3/C2×C6 → C2 ⊆ Aut C2×C6 | 144 | | (C2xC6).239(C2^2xS3) | 288,735 |
(C2×C6).240(C22×S3) = C62.223C23 | φ: C22×S3/C2×C6 → C2 ⊆ Aut C2×C6 | 144 | | (C2xC6).240(C2^2xS3) | 288,736 |
(C2×C6).241(C22×S3) = C22⋊C4×C3⋊S3 | φ: C22×S3/C2×C6 → C2 ⊆ Aut C2×C6 | 72 | | (C2xC6).241(C2^2xS3) | 288,737 |
(C2×C6).242(C22×S3) = C62.225C23 | φ: C22×S3/C2×C6 → C2 ⊆ Aut C2×C6 | 144 | | (C2xC6).242(C2^2xS3) | 288,738 |
(C2×C6).243(C22×S3) = C62⋊12D4 | φ: C22×S3/C2×C6 → C2 ⊆ Aut C2×C6 | 72 | | (C2xC6).243(C2^2xS3) | 288,739 |
(C2×C6).244(C22×S3) = C62.227C23 | φ: C22×S3/C2×C6 → C2 ⊆ Aut C2×C6 | 144 | | (C2xC6).244(C2^2xS3) | 288,740 |
(C2×C6).245(C22×S3) = C62.228C23 | φ: C22×S3/C2×C6 → C2 ⊆ Aut C2×C6 | 144 | | (C2xC6).245(C2^2xS3) | 288,741 |
(C2×C6).246(C22×S3) = C62.229C23 | φ: C22×S3/C2×C6 → C2 ⊆ Aut C2×C6 | 144 | | (C2xC6).246(C2^2xS3) | 288,742 |
(C2×C6).247(C22×S3) = C62.69D4 | φ: C22×S3/C2×C6 → C2 ⊆ Aut C2×C6 | 144 | | (C2xC6).247(C2^2xS3) | 288,743 |
(C2×C6).248(C22×S3) = C62.231C23 | φ: C22×S3/C2×C6 → C2 ⊆ Aut C2×C6 | 288 | | (C2xC6).248(C2^2xS3) | 288,744 |
(C2×C6).249(C22×S3) = C12⋊2Dic6 | φ: C22×S3/C2×C6 → C2 ⊆ Aut C2×C6 | 288 | | (C2xC6).249(C2^2xS3) | 288,745 |
(C2×C6).250(C22×S3) = C62.233C23 | φ: C22×S3/C2×C6 → C2 ⊆ Aut C2×C6 | 288 | | (C2xC6).250(C2^2xS3) | 288,746 |
(C2×C6).251(C22×S3) = C62.234C23 | φ: C22×S3/C2×C6 → C2 ⊆ Aut C2×C6 | 288 | | (C2xC6).251(C2^2xS3) | 288,747 |
(C2×C6).252(C22×S3) = C4⋊C4×C3⋊S3 | φ: C22×S3/C2×C6 → C2 ⊆ Aut C2×C6 | 144 | | (C2xC6).252(C2^2xS3) | 288,748 |
(C2×C6).253(C22×S3) = C62.236C23 | φ: C22×S3/C2×C6 → C2 ⊆ Aut C2×C6 | 144 | | (C2xC6).253(C2^2xS3) | 288,749 |
(C2×C6).254(C22×S3) = C62.237C23 | φ: C22×S3/C2×C6 → C2 ⊆ Aut C2×C6 | 144 | | (C2xC6).254(C2^2xS3) | 288,750 |
(C2×C6).255(C22×S3) = C62.238C23 | φ: C22×S3/C2×C6 → C2 ⊆ Aut C2×C6 | 144 | | (C2xC6).255(C2^2xS3) | 288,751 |
(C2×C6).256(C22×S3) = C12⋊3D12 | φ: C22×S3/C2×C6 → C2 ⊆ Aut C2×C6 | 144 | | (C2xC6).256(C2^2xS3) | 288,752 |
(C2×C6).257(C22×S3) = C62.240C23 | φ: C22×S3/C2×C6 → C2 ⊆ Aut C2×C6 | 144 | | (C2xC6).257(C2^2xS3) | 288,753 |
(C2×C6).258(C22×S3) = C12.31D12 | φ: C22×S3/C2×C6 → C2 ⊆ Aut C2×C6 | 144 | | (C2xC6).258(C2^2xS3) | 288,754 |
(C2×C6).259(C22×S3) = C62.242C23 | φ: C22×S3/C2×C6 → C2 ⊆ Aut C2×C6 | 144 | | (C2xC6).259(C2^2xS3) | 288,755 |
(C2×C6).260(C22×S3) = C2×C4×C3⋊Dic3 | φ: C22×S3/C2×C6 → C2 ⊆ Aut C2×C6 | 288 | | (C2xC6).260(C2^2xS3) | 288,779 |
(C2×C6).261(C22×S3) = C2×C6.Dic6 | φ: C22×S3/C2×C6 → C2 ⊆ Aut C2×C6 | 288 | | (C2xC6).261(C2^2xS3) | 288,780 |
(C2×C6).262(C22×S3) = C62⋊10Q8 | φ: C22×S3/C2×C6 → C2 ⊆ Aut C2×C6 | 144 | | (C2xC6).262(C2^2xS3) | 288,781 |
(C2×C6).263(C22×S3) = C2×C12⋊Dic3 | φ: C22×S3/C2×C6 → C2 ⊆ Aut C2×C6 | 288 | | (C2xC6).263(C2^2xS3) | 288,782 |
(C2×C6).264(C22×S3) = C62.247C23 | φ: C22×S3/C2×C6 → C2 ⊆ Aut C2×C6 | 144 | | (C2xC6).264(C2^2xS3) | 288,783 |
(C2×C6).265(C22×S3) = C2×C6.11D12 | φ: C22×S3/C2×C6 → C2 ⊆ Aut C2×C6 | 144 | | (C2xC6).265(C2^2xS3) | 288,784 |
(C2×C6).266(C22×S3) = C4×C32⋊7D4 | φ: C22×S3/C2×C6 → C2 ⊆ Aut C2×C6 | 144 | | (C2xC6).266(C2^2xS3) | 288,785 |
(C2×C6).267(C22×S3) = C62.129D4 | φ: C22×S3/C2×C6 → C2 ⊆ Aut C2×C6 | 144 | | (C2xC6).267(C2^2xS3) | 288,786 |
(C2×C6).268(C22×S3) = C62⋊19D4 | φ: C22×S3/C2×C6 → C2 ⊆ Aut C2×C6 | 144 | | (C2xC6).268(C2^2xS3) | 288,787 |
(C2×C6).269(C22×S3) = D4×C3⋊Dic3 | φ: C22×S3/C2×C6 → C2 ⊆ Aut C2×C6 | 144 | | (C2xC6).269(C2^2xS3) | 288,791 |
(C2×C6).270(C22×S3) = C62.72D4 | φ: C22×S3/C2×C6 → C2 ⊆ Aut C2×C6 | 144 | | (C2xC6).270(C2^2xS3) | 288,792 |
(C2×C6).271(C22×S3) = C62.254C23 | φ: C22×S3/C2×C6 → C2 ⊆ Aut C2×C6 | 144 | | (C2xC6).271(C2^2xS3) | 288,793 |
(C2×C6).272(C22×S3) = C62⋊13D4 | φ: C22×S3/C2×C6 → C2 ⊆ Aut C2×C6 | 72 | | (C2xC6).272(C2^2xS3) | 288,794 |
(C2×C6).273(C22×S3) = C62.256C23 | φ: C22×S3/C2×C6 → C2 ⊆ Aut C2×C6 | 144 | | (C2xC6).273(C2^2xS3) | 288,795 |
(C2×C6).274(C22×S3) = C62⋊14D4 | φ: C22×S3/C2×C6 → C2 ⊆ Aut C2×C6 | 144 | | (C2xC6).274(C2^2xS3) | 288,796 |
(C2×C6).275(C22×S3) = C62.258C23 | φ: C22×S3/C2×C6 → C2 ⊆ Aut C2×C6 | 144 | | (C2xC6).275(C2^2xS3) | 288,797 |
(C2×C6).276(C22×S3) = C62.259C23 | φ: C22×S3/C2×C6 → C2 ⊆ Aut C2×C6 | 288 | | (C2xC6).276(C2^2xS3) | 288,801 |
(C2×C6).277(C22×S3) = Q8×C3⋊Dic3 | φ: C22×S3/C2×C6 → C2 ⊆ Aut C2×C6 | 288 | | (C2xC6).277(C2^2xS3) | 288,802 |
(C2×C6).278(C22×S3) = C62.261C23 | φ: C22×S3/C2×C6 → C2 ⊆ Aut C2×C6 | 144 | | (C2xC6).278(C2^2xS3) | 288,803 |
(C2×C6).279(C22×S3) = C62.262C23 | φ: C22×S3/C2×C6 → C2 ⊆ Aut C2×C6 | 144 | | (C2xC6).279(C2^2xS3) | 288,804 |
(C2×C6).280(C22×S3) = C2×C62⋊5C4 | φ: C22×S3/C2×C6 → C2 ⊆ Aut C2×C6 | 144 | | (C2xC6).280(C2^2xS3) | 288,809 |
(C2×C6).281(C22×S3) = C62⋊24D4 | φ: C22×S3/C2×C6 → C2 ⊆ Aut C2×C6 | 72 | | (C2xC6).281(C2^2xS3) | 288,810 |
(C2×C6).282(C22×S3) = C24×D9 | φ: C22×S3/C2×C6 → C2 ⊆ Aut C2×C6 | 144 | | (C2xC6).282(C2^2xS3) | 288,839 |
(C2×C6).283(C22×S3) = C22×C32⋊4Q8 | φ: C22×S3/C2×C6 → C2 ⊆ Aut C2×C6 | 288 | | (C2xC6).283(C2^2xS3) | 288,1003 |
(C2×C6).284(C22×S3) = C22×C4×C3⋊S3 | φ: C22×S3/C2×C6 → C2 ⊆ Aut C2×C6 | 144 | | (C2xC6).284(C2^2xS3) | 288,1004 |
(C2×C6).285(C22×S3) = C22×C12⋊S3 | φ: C22×S3/C2×C6 → C2 ⊆ Aut C2×C6 | 144 | | (C2xC6).285(C2^2xS3) | 288,1005 |
(C2×C6).286(C22×S3) = C2×C12.59D6 | φ: C22×S3/C2×C6 → C2 ⊆ Aut C2×C6 | 144 | | (C2xC6).286(C2^2xS3) | 288,1006 |
(C2×C6).287(C22×S3) = C2×C12.D6 | φ: C22×S3/C2×C6 → C2 ⊆ Aut C2×C6 | 144 | | (C2xC6).287(C2^2xS3) | 288,1008 |
(C2×C6).288(C22×S3) = C2×Q8×C3⋊S3 | φ: C22×S3/C2×C6 → C2 ⊆ Aut C2×C6 | 144 | | (C2xC6).288(C2^2xS3) | 288,1010 |
(C2×C6).289(C22×S3) = C2×C12.26D6 | φ: C22×S3/C2×C6 → C2 ⊆ Aut C2×C6 | 144 | | (C2xC6).289(C2^2xS3) | 288,1011 |
(C2×C6).290(C22×S3) = C32⋊72- 1+4 | φ: C22×S3/C2×C6 → C2 ⊆ Aut C2×C6 | 144 | | (C2xC6).290(C2^2xS3) | 288,1012 |
(C2×C6).291(C22×S3) = C23×C3⋊Dic3 | φ: C22×S3/C2×C6 → C2 ⊆ Aut C2×C6 | 288 | | (C2xC6).291(C2^2xS3) | 288,1016 |
(C2×C6).292(C22×S3) = C12×Dic6 | central extension (φ=1) | 96 | | (C2xC6).292(C2^2xS3) | 288,639 |
(C2×C6).293(C22×S3) = C3×C12⋊2Q8 | central extension (φ=1) | 96 | | (C2xC6).293(C2^2xS3) | 288,640 |
(C2×C6).294(C22×S3) = C3×C12.6Q8 | central extension (φ=1) | 96 | | (C2xC6).294(C2^2xS3) | 288,641 |
(C2×C6).295(C22×S3) = S3×C4×C12 | central extension (φ=1) | 96 | | (C2xC6).295(C2^2xS3) | 288,642 |
(C2×C6).296(C22×S3) = C3×C42⋊2S3 | central extension (φ=1) | 96 | | (C2xC6).296(C2^2xS3) | 288,643 |
(C2×C6).297(C22×S3) = C12×D12 | central extension (φ=1) | 96 | | (C2xC6).297(C2^2xS3) | 288,644 |
(C2×C6).298(C22×S3) = C3×C4⋊D12 | central extension (φ=1) | 96 | | (C2xC6).298(C2^2xS3) | 288,645 |
(C2×C6).299(C22×S3) = C3×C42⋊7S3 | central extension (φ=1) | 96 | | (C2xC6).299(C2^2xS3) | 288,646 |
(C2×C6).300(C22×S3) = C3×C42⋊3S3 | central extension (φ=1) | 96 | | (C2xC6).300(C2^2xS3) | 288,647 |
(C2×C6).301(C22×S3) = C3×C23.16D6 | central extension (φ=1) | 48 | | (C2xC6).301(C2^2xS3) | 288,648 |
(C2×C6).302(C22×S3) = C3×Dic3.D4 | central extension (φ=1) | 48 | | (C2xC6).302(C2^2xS3) | 288,649 |
(C2×C6).303(C22×S3) = C3×C23.8D6 | central extension (φ=1) | 48 | | (C2xC6).303(C2^2xS3) | 288,650 |
(C2×C6).304(C22×S3) = C3×S3×C22⋊C4 | central extension (φ=1) | 48 | | (C2xC6).304(C2^2xS3) | 288,651 |
(C2×C6).305(C22×S3) = C3×Dic3⋊4D4 | central extension (φ=1) | 48 | | (C2xC6).305(C2^2xS3) | 288,652 |
(C2×C6).306(C22×S3) = C3×D6⋊D4 | central extension (φ=1) | 48 | | (C2xC6).306(C2^2xS3) | 288,653 |
(C2×C6).307(C22×S3) = C3×C23.9D6 | central extension (φ=1) | 48 | | (C2xC6).307(C2^2xS3) | 288,654 |
(C2×C6).308(C22×S3) = C3×Dic3⋊D4 | central extension (φ=1) | 48 | | (C2xC6).308(C2^2xS3) | 288,655 |
(C2×C6).309(C22×S3) = C3×C23.11D6 | central extension (φ=1) | 48 | | (C2xC6).309(C2^2xS3) | 288,656 |
(C2×C6).310(C22×S3) = C3×C23.21D6 | central extension (φ=1) | 48 | | (C2xC6).310(C2^2xS3) | 288,657 |
(C2×C6).311(C22×S3) = C3×Dic6⋊C4 | central extension (φ=1) | 96 | | (C2xC6).311(C2^2xS3) | 288,658 |
(C2×C6).312(C22×S3) = C3×C12⋊Q8 | central extension (φ=1) | 96 | | (C2xC6).312(C2^2xS3) | 288,659 |
(C2×C6).313(C22×S3) = C3×Dic3.Q8 | central extension (φ=1) | 96 | | (C2xC6).313(C2^2xS3) | 288,660 |
(C2×C6).314(C22×S3) = C3×C4.Dic6 | central extension (φ=1) | 96 | | (C2xC6).314(C2^2xS3) | 288,661 |
(C2×C6).315(C22×S3) = C3×S3×C4⋊C4 | central extension (φ=1) | 96 | | (C2xC6).315(C2^2xS3) | 288,662 |
(C2×C6).316(C22×S3) = C3×C4⋊C4⋊7S3 | central extension (φ=1) | 96 | | (C2xC6).316(C2^2xS3) | 288,663 |
(C2×C6).317(C22×S3) = C3×Dic3⋊5D4 | central extension (φ=1) | 96 | | (C2xC6).317(C2^2xS3) | 288,664 |
(C2×C6).318(C22×S3) = C3×D6.D4 | central extension (φ=1) | 96 | | (C2xC6).318(C2^2xS3) | 288,665 |
(C2×C6).319(C22×S3) = C3×C12⋊D4 | central extension (φ=1) | 96 | | (C2xC6).319(C2^2xS3) | 288,666 |
(C2×C6).320(C22×S3) = C3×D6⋊Q8 | central extension (φ=1) | 96 | | (C2xC6).320(C2^2xS3) | 288,667 |
(C2×C6).321(C22×S3) = C3×C4.D12 | central extension (φ=1) | 96 | | (C2xC6).321(C2^2xS3) | 288,668 |
(C2×C6).322(C22×S3) = C3×C4⋊C4⋊S3 | central extension (φ=1) | 96 | | (C2xC6).322(C2^2xS3) | 288,669 |
(C2×C6).323(C22×S3) = Dic3×C2×C12 | central extension (φ=1) | 96 | | (C2xC6).323(C2^2xS3) | 288,693 |
(C2×C6).324(C22×S3) = C6×Dic3⋊C4 | central extension (φ=1) | 96 | | (C2xC6).324(C2^2xS3) | 288,694 |
(C2×C6).325(C22×S3) = C3×C12.48D4 | central extension (φ=1) | 48 | | (C2xC6).325(C2^2xS3) | 288,695 |
(C2×C6).326(C22×S3) = C6×C4⋊Dic3 | central extension (φ=1) | 96 | | (C2xC6).326(C2^2xS3) | 288,696 |
(C2×C6).327(C22×S3) = C3×C23.26D6 | central extension (φ=1) | 48 | | (C2xC6).327(C2^2xS3) | 288,697 |
(C2×C6).328(C22×S3) = C6×D6⋊C4 | central extension (φ=1) | 96 | | (C2xC6).328(C2^2xS3) | 288,698 |
(C2×C6).329(C22×S3) = C12×C3⋊D4 | central extension (φ=1) | 48 | | (C2xC6).329(C2^2xS3) | 288,699 |
(C2×C6).330(C22×S3) = C3×C23.28D6 | central extension (φ=1) | 48 | | (C2xC6).330(C2^2xS3) | 288,700 |
(C2×C6).331(C22×S3) = C3×C12⋊7D4 | central extension (φ=1) | 48 | | (C2xC6).331(C2^2xS3) | 288,701 |
(C2×C6).332(C22×S3) = C3×D4×Dic3 | central extension (φ=1) | 48 | | (C2xC6).332(C2^2xS3) | 288,705 |
(C2×C6).333(C22×S3) = C3×C23.23D6 | central extension (φ=1) | 48 | | (C2xC6).333(C2^2xS3) | 288,706 |
(C2×C6).334(C22×S3) = C3×C23.12D6 | central extension (φ=1) | 48 | | (C2xC6).334(C2^2xS3) | 288,707 |
(C2×C6).335(C22×S3) = C3×C23⋊2D6 | central extension (φ=1) | 48 | | (C2xC6).335(C2^2xS3) | 288,708 |
(C2×C6).336(C22×S3) = C3×D6⋊3D4 | central extension (φ=1) | 48 | | (C2xC6).336(C2^2xS3) | 288,709 |
(C2×C6).337(C22×S3) = C3×C23.14D6 | central extension (φ=1) | 48 | | (C2xC6).337(C2^2xS3) | 288,710 |
(C2×C6).338(C22×S3) = C3×C12⋊3D4 | central extension (φ=1) | 48 | | (C2xC6).338(C2^2xS3) | 288,711 |
(C2×C6).339(C22×S3) = C3×Dic3⋊Q8 | central extension (φ=1) | 96 | | (C2xC6).339(C2^2xS3) | 288,715 |
(C2×C6).340(C22×S3) = C3×Q8×Dic3 | central extension (φ=1) | 96 | | (C2xC6).340(C2^2xS3) | 288,716 |
(C2×C6).341(C22×S3) = C3×D6⋊3Q8 | central extension (φ=1) | 96 | | (C2xC6).341(C2^2xS3) | 288,717 |
(C2×C6).342(C22×S3) = C3×C12.23D4 | central extension (φ=1) | 96 | | (C2xC6).342(C2^2xS3) | 288,718 |
(C2×C6).343(C22×S3) = C6×C6.D4 | central extension (φ=1) | 48 | | (C2xC6).343(C2^2xS3) | 288,723 |
(C2×C6).344(C22×S3) = C3×C24⋊4S3 | central extension (φ=1) | 24 | | (C2xC6).344(C2^2xS3) | 288,724 |
(C2×C6).345(C22×S3) = C2×C6×Dic6 | central extension (φ=1) | 96 | | (C2xC6).345(C2^2xS3) | 288,988 |
(C2×C6).346(C22×S3) = S3×C22×C12 | central extension (φ=1) | 96 | | (C2xC6).346(C2^2xS3) | 288,989 |
(C2×C6).347(C22×S3) = C2×C6×D12 | central extension (φ=1) | 96 | | (C2xC6).347(C2^2xS3) | 288,990 |
(C2×C6).348(C22×S3) = S3×C6×Q8 | central extension (φ=1) | 96 | | (C2xC6).348(C2^2xS3) | 288,995 |
(C2×C6).349(C22×S3) = C6×Q8⋊3S3 | central extension (φ=1) | 96 | | (C2xC6).349(C2^2xS3) | 288,996 |
(C2×C6).350(C22×S3) = Dic3×C22×C6 | central extension (φ=1) | 96 | | (C2xC6).350(C2^2xS3) | 288,1001 |